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Abstract — A new Spacecraft Transponding Modem
(STM) is being developed by the Jet Propulsion Labora-
tory for National Aeronautics and Space Administration
(NASA) for deep space communication applications. The
STM receives an X-band (7.17 GHz) uplink signal and
generates an X-band (8.4 GHz) and a Ka-band (32.0 GHz)
coherent or noncoherent downlink signals.

The STM architecture incorporates two miniature linear
phase modulators. These modulators are used to modulate
the X-band and Ka-band downlink frequencies with the
downlink telemetry, turnaround ranging, or regenerative
PN ranging signals.

The linear phase modulators are designed with custom
developed microwave monolithic integrated circuit
(MMIC) chips. The phase modulator MMICs, the ampli-
fiers, and driver circuits are laid out on drop-in alumina
substrates. These modulator designs meet the following
requirements: phase deviation range of + 140 degrees at
X-band and Ka-band downlink carrier frequencies, phase
linearity of less than 8%, phase modulation input band-
width of greater than 100 MHz, and differential input with
sinewave or squarewave modulating format.
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1. INTRODUCTION

This article summarizes the performance results of two
hybrid linear-phase modulators developed for deep space
Spacecraft Transponding Modem [1] application. The
linear-phase modulators are used in the X-band synthe-
sizer and the Ka-band synthesizer [1, 2] as shown in Fig-
ure 1.

Summary of Spacecraft Transponding Modem

The Spacecraft Transponding Modem implements the
standard transponder functions and some of the command
and telemetry channel service functions that have previ-
ously resided in spacecraft Command and Data Subsystem
(CDS). The STM uses custom application specific inte-
grated circuits (ASICs), MMICs, and multi chip module
(MCM) packaging to reduce the active device parts count
to 70, mass to 1.5 kg, and volume to 524 cm’,
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Figure 1. STM Functional Block Diagram

The STM tracks an X-band uplink signal and provides
both X-band and Ka-band downlink signals, either coher-
ent or non-coherent with the uplink signal.

The command detector is integrated into the STM that
decodes the uplink commands. The maximum uplink
command data rate I 2000 bits per second (bps). The
STM implements also a codeblock processor and a hard-
ware command decoder.

Downlink telemetry is received from the spacecraft CDS
as telemetry frames. The STM provides the following
downlink telemetry coding options: 1) Reed-Solomon
coding with interleave depths of one and five, 2) the stan-
dard convolutional coding with rates (7-1/2) and (15-1/6)
used in the Deep Space Network (DSN), and 3) Turbo
coding with rates 1/3 and 1/6. The downlink symbol rates
can be linearly ramped to match the G/T curve of the
receiving station, providing up to a 1.9 dB increase in data
return. Data rates range from 5 bps to 24 Mbps. The
STM provides three telemetry modulation modes: 1)
modulated subcarrier, 2) biphase-L. modulated direct on
carrier, and 3) Offset-QPSK.

The STM provides also the capability to generate one of
four telemetry beacon tones that are not harmonically
related.

The STM provides three ranging modes: 1) standard turn
around ranging, 2) regenerative pseudo-noise (PN) rang-

ing, and 3) differential one-way ranging (DOR) tone. The
regenerative PN-ranging provides the capability of in-

creasing the ground received ranging signal-to-noise ratio
(SNR) by up to 30 dB.

The STM provides two different avionics interfaces to the
CDS data-bus: 1) MIL STD 1553B bus and 2) industry
standard PCI interface. Digital interfaces provide the
capability to switch between high gain and low gain an-
tennas and to point Ka-band antennas in future missions.

Linear Phase Modulator Design Specifications

The design specifications for the 8.4-GHz analog phase
modulator are given in Table 1.

Table 1. Linear Phase Modulator Specifications

Parameter Value

RF Frequency Range 8 GHz - 8.5 GHz
Total Phase Shift + 140 deg.
Modulation Linearity +8%

over £ 140 deg.

Modulation Bandwidth > 100 MHz
Modulation Sensitivity > 120 deg/V
Insertion Loss <8dB

Insertion Loss Flatness +0.5 dB

The analog phase modulator must be capable of large
linear phase deviation, low loss, and wideband operation
with good thermal stability. In addition, the phase modu-
lator and its driver circuit must be compact and consume
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Figure 2. X-Band Linear Phase Modulator Block Diagram

Figure 3. X-Band Linear Phase Modulator Picture

low dc power. The design is to provide + 140 degrees of
peak phase deviation to accommodate downlink modula-
tion of telemetry and ranging signals. The tolerance on
the phase deviation linearity is = 8 %. The insertion loss
should be less than 8 dB and its variation with phase shift
should be within £ 0.5 dB. The phase delay variation
specifications over the transponder hardware qualification
environment, - 30°C to + 85°C, is less than 0.5 ps/°C for
the phase modulator. The design approach utilizes custom
designed GaAs MMIC phase modulators to provide low
loss and well-controlled phase performance.

The organization of the article is as follows. The descrip-
tion of the hybrid modulator circuit configuration is pre-
sented in Section 2. The test data and analysis are pre-
sented in Section 3. The conclusions are presented in
Section 4.

2. DESCRIPTION OF THE LINEAR PHASE
MODULATOR

The block diagram schematic of the hybrid X-band linear
phase modulator is shown in Figure 2. The modulator
photograph is shown in Figure 3. It is designed as a drop-
in circuit on a 25-mil thick alumina substrate into the
transponder X-band exciter module. It consists of two
MMIC phase modulators and three MMIC amplifiers, and
a driver op-amp integrated circuit. The modulator meas-
ures about 10 mm X 30 mm.

Description of the MMIC Linear Phase Shifter

The MMIC linear phase shifters were developed by Hittite
Microwave Co., under contract with the NASA Small
Business Innovation Research (SBIR) program.



The MMIC phase-shifter chip incorporates a four-stage
reflection phase shifters with Lange couplers and
MESFET-varactors to provide a phase deviation of £ 100
degrees with better than 8 % linearity. The MESFET used
in this application is a standard 0.5-micron depletion
mode MESFET from Triquint (HA2) analog MMIC proc-
ess. This linear phase shifter has been simulated using
CAD tools to have 300 degrees of continuous phase shift
in the 8.4 GHz to 8.6 GHz range with the variation of the
MESFET-varactor control voltage from 1 V to 9 V. Two
design and fabrication iterations were used to optimize the
performance of the phase-shifter chips. The chip per-
formance is given in Table 2.

Table 2. MMIC Linear Phase-Shifter
Chip Performance

Parameter Value

Chip Size 1.5mm X 2.2mm X 0.1lmm
RF Frequency Range 8 GHz - 8.5 GHz
Measured at Frequencies 8 GHz, and 8.4 GHz
Total Phase Shift 216 deg
(25V1t08.5V)

Modulation Linearity +4.8%

over £ 50 deg

Modulation Linearity +78%

over + 100 deg

Modulation Bandwidth 350 MHz
Modulation Sensitivity 36 deg/V

Insertion Loss -14.7dB

Insertion Loss Flatness +0.8dB

RF Port Return Loss -18dB

For the X-band downlink, to satisfy the phase-deviation
requirement of greater than + 140 degrees, the 8.4-GHz
phase modulator includes two phase-shifter chips in the
design.

For the Ka-band downlink, the phase modulator is fol-
lowed by a times-4 circuit as shown in Figure 1. This
arrangement reduces the phase-deviation requirement of
the phase modulator to + 35 degrees. Therefore, the 8-
GHz phase modulator uses only one phase shifter in the
design.

The overall phase sensitivity from the modulating port to
the RF port of greater than 120 degrees/V is met by ad-
justing the gain of the driver amplifier for both the 8.4-
GHz and the 8-GHz phase modulators.

3. MEASURED RESULTS
3.1) 8.4-GHz Phase Modulator Test Results

The test results for the X-band phase modulator are pre-
sented below. In these tests, we by-passed the driver
amplifier and applied the modulating signal directly to the
phase shifters. This enabled us to vary the d.c. bias volt-

age and obtain the characteristics of the phase modulator
without the driving amplifier. The gain of the driving
amplifier is adjusted later to satisfy the overall phase
modulation sensitivity requirement.

In these characterization tests, we used 82-degree and
138-degree modulation index levels, which are easily
identified from the output frequency spectrum. For a
sinusoidal modulating signal, the 82-degree modulation
index is obtained when the carrier power equals the first
sideband power (Jo/J; = 0 dB) and the 138-degree modula-
tion index is obtained when the carrier power attains its
first minimum.

Modulation Signal Level

In this test, a sinusoidal modulating signal of frequency 1
MHz is used. The modulation signal amplitude (A,) for
82-degree modulation index and the modulation signal
amplitude (A;) for 138-degree modulation index are
shown in Figure 4. The maximum carrier suppression
measured vs. d.c. bias voltage is greater than 20 dB over
the temperature range from — 45°C to + 75°C.

Modulator A.C. Sensitivity

The average modulator sensitivity over + 82-degree-range
is determined by using the formula p; = 82/A; deg/V, and
over * 138-degree-range by using the formula p, = 138/A,
deg/V.

For the d.c. bias voltage of + 4 V, the modulator sensitiv-
ity is about 68 deg/V at room temperature. The a.c. sensi-
tivity varies from 64 deg/V to 69 deg/V over the tempera-
ture range from — 45°C to + 75°C.

Modulator A.C. Linearity

The modulator linearity is obtained from the two modula-
tor sensitivity measurements as (Mp-141)/1;.  The modulator
linearity results are shown in Figure 5.

For the d.c. bias voltage of + 4V, the modulator nonlinear-
ity is less than 9% over the temperature range from -45°C
to + 75°C.

Modulator A.C. Phase Shift Curves

The modulator a.c. phase shift curves are obtained by
integrating the modulator sensitivity curves. The modula-
tor a.c. phase shift curves are shown in Figure 6. This
figure shows the overall linearity of the phase shift charac-
teristic of the phase modulator over the d.c. bias voltage
range from+2 Vto+5.5V.
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Modulator Output Power Variation

The r.f. output power variation versus the d.c. bias voltage
is measured at different temperatures. For the dc bias
voltage of +4 V, the output power varies from -6 dBm to
+1.5 dBm over the temperature range from —45°C to +
75°C. The phase modulator output drives another ampli-
fier that is operated in the saturation region, which reduces
the output power variation to less than 1 dB.

Modulation Bandwidth

The modulation bandwidth is obtained at the d.c. bias
voltage of + 4 V by changing the frequency of the modu-
lating signal and measuring its amplitude and power for a
modulation index of 82 degrees (Jo¢/J; = 0 dB). In order to
obtain a frequency transfer function similar to filters, we
plot the relative signal power level, P /P versus the fre-
quency, where P is the modulating signal power and Py is
the reference power level. The Py is chosen as the meas-
ured power of the modulating sinusoidal signal of fre-
quency 100 kHz. The result is shown in Figure 7. The
modulation bandwidth is about 100 MHz.

Modulation Sidebands

The phase modulation sideband power levels are
measured by applying a 100-kHz sinusoidal modulating
signal and varying its amplitude. The amplitude data of
the modulating signal is converted to modulation index
level by multiplying the amplitude by the modulator
sensitivity over + 82 degrees. The resuits are shown in
Figure 8. The measured sideband power levels match
very well with the theoretical levels for modulation
indices less than 82 degrees and gradually deviate from
them for modulation indices greater than 82 degrees.

3.2) 8-GHz Phase Modulator Test Results

We tested the 8-GHz phase modulator by applying the
modulating signal directly to the phase shifter and varying
the d.c. bias voltage. The gain of the driving amplifier is
adjusted later to satisfy the overall phase modulation
sensitivity requirement.

In these tests, we used 56-degree and 82-degree modula-
tion index levels, which are easily identified from the
output frequency spectrum. For a sinusoidal modulating



signal, 56-degree modulation index is obtained when the
carrier power is 5-dB above the first sideband power (Jo/J,
= 5 dB), and the 82-degree modulation index is obtained
when the carrier power equals the first sideband power
Jo/J;=0dB).

The test results for the Ka-band phase modulator are simi-
lar to the X-band phase modulator. For the d.c. bias volt-
age of + 4 V, the modulator sensitivity is about 42 deg/V
at room temperature and varies from 40 deg/V to 54
deg/V over the temperature range from —45°C to + 75 °C.
The modulator linearity over + 56 degrees is less than 4
%. The modulating bandwidth is greater than 100 MHz.

4. CONCLUSIONS

The linear phase modulator designs presented are used in
the STM to phase modulate the X-band and Ka-band
downlink frequencies. The linear phase modulator design
used custom developed MMIC phase shifter chips. The
important requirements of + 140-degree phasc deviation,
less than 8 % phase linearity, and greater than 100-MHz
modulation bandwidth are met. The excellent linearity
reduced the intermodulation loss when a telemetry and a
ranging signal applied to the phase modulator simultane-
ously.

The drop-in phase modulator circuits are implemented on
separate substrates, which enabled us to test and adjust the
gains of the driver amplifiers separately. Their small size
made it possible to reduce the size of the synthesizer
modules.

In the future, we are planning to integrate the phase shift-
ers, the amplifiers, and the driver circuits in an r.f. inte-
grated circuit.
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